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COMMENTS ON THE PAPER: THEORETICAL FOUNDATIONS
OF THE FINITE ELEMENT METHODY

IN THE summer of 1965 following some clues in the literature [1] and also some early
indications in the experiments on the Zienkiewicz plate bending triangle [2], certain
definite conclusions were reached concerning the convergence of nonconforming plate
elements. The numerical experiments and the theory that subsequently reinforced the
conclusions are described in the addendum to Ref. [2]. The experiments are now described
less succinctly, as their import appears to have been generally misunderstood.

If we postulate that a particular solution converges as the mesh is refined, giving
smoothly varying stresses, we may presume also that the finite element representation
gives sensibly constant bending stress within each element, and hence sensibly constant
curvature. This is why, in engineering terms, displacement functions must be *‘complete’[3].
However, early experiments suggested that the responsibilities were not entirely fulfilled
unless conformity was also imposed. It was fortunate that four elements were simul-
taneously under test [2], one of which, the Zienkiewicz version, was nonconforming,
the other three conforming. All four gave the states of constant curvature under suitable
nodal action, and all four were derived from a single shape function routine with options,
by numerical integration. In two cases this was exact. The routine was checked thoroughly
by various numerical tests.

The first indication of the strange behaviour of the nonconforming triangle was when
mesh (a) of Fig. 1 responded correctly to distributed bending moment applied at the free
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F1G. 1. The mesh pattern on which experiments demonstrated convergence or non-convergence.
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end whereas (b) did not. The evidence was already irrefutable, for the conforming triangles
all behaved correctly in both mesh (a) and (b). This evidence suggested that a mesh of
type (c), composed of three sets of parallel lines, gives convergence, whereas mesh (d),
composed of “union jack™ figures, would not give convergence, however fine the mesh.
This suggestion may be easily and decisively checked, by imposing a state of constant
curvature on the basic figures which, replicated in both directions, give (c¢) or (d). Thus,
when the external nodes of (e) and (f) are given slopes and deflections corresponding to
states of constant curvature, either the elements behave, or they misbehave. That is, the
internal node either takes up its correct slopes and deflection corresponding to the required
state of constant curvature, or it does not. With the non-conforming triangle, (¢) behaved
but (f) did not. (Despite this result, the element is useful and gives accurate results in
practice.)

These observations did not complete the research. The theory they suggested showed
that, provided the element has certain symmetries possessed by every practical element,
mesh (c) converges, regardless of the angles of the three sets of parallel lines. This property
extends also to the general anisotropic case, and it even extends to the case where the
integration formula is not accurate enough to give correct stiffness coefficients [4]. As a
bonus, the theory predicts correctly [1] that a mesh of equal Melosh rectangles converges.

These observations and theoretical predictions seem to be at variance with the con-
clusions of Ref. [2]. It is the purpose of the present note to clarify what has been proved.

The important point is that the convergence proof presented in Ref. [2] depends on
u., belonging to C,,, as indicated in the text.

The analogy with the case of Poisson’s equation permits the conclusion that u,, belongs
to C,, in the case when operator A is a second order differential operator and the com-
ponents of f, (body force density components in the elastic case) corresponding to the
successive approximate solutions, remain continuous and bounded within each element
as the size decreases indefinitely. This is the case in two- and three-dimensional elasticity.
and hence also for plates, shells and beams if the transverse shear deformation has not
been neglected.

The situation changes however if the order of the highest derivative of u; contained
in A exceeds p;+ 1, because the boundedness of the components of f, does not then ensure
the boundedness of the (p;+ 1)th derivatives of the field component u;. The (p;+1)th
derivatives can, for instance, be constant within each element but unbounded as the
size decreases indefinitely, whereas the (p; +2)th derivatives vanish and are thus bounded.

Such is the case in the elastic theories which result from neglecting the transverse
shear deformation. The appropriate convergence conditions can be established by re-
sorting to the convergence conditions of the corresponding theories in which the transverse
shear deformation is not neglected.

In the simplified theory of thin plates, for instance, A is a fourth order operator and
(pi+1) is equal to 3. The convergence conditions are, completeness, and the condition
that the third derivatives of the transverse displacement, corresponding to the successive
approximate solutions, remain bounded within each element as the size decreases (see
Ref. [5]).

The union jack mesh (d) does not give convergence because the third derivatives of
the transverse displacement are unbounded as the size of the element decreases. Such
derivatives remain bounded in mesh (c): convergence is thus obtained. If conformity
were guaranteed, completeness would be sufficient for convergence regardless of the
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mesh pattern. Completeness and the boundedness of the (p; + 1)th derivatives corresponding
to the successive approximate solutions appear to be sufficient convergence conditions
in the general case.

Such conditions can at least be shown to be sufficient if a type of element exists with
the same general shape and nodes as the one which is to be investigated, but meeting both
completeness and conformity conditions. Let u¥, be the field generated by such an element,
when the nodes and nodal displacements are the same as those corresponding to u,,.
The same argument that was used to prove the completeness criterion in section 9 of
Ref. [3] may indeed be used again (if the (p;+ 1)th derivatives of u,, are bounded) to show
that the distance between the two fields u}, and u,, can be smaller than a given positive
and arbitrarily small number. As u,, is a compatible field, the inequality (116) of Ref. [3]
remains valid and the convergence proof continues as in Ref. [3].
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